Cursos de Inteligencia Artificial | Cursos de Artificial Intelligence (AI)

Cursos de Inteligencia Artificial

Los cursos locales dirigidos por instructor en vivo de capacitación en Inteligencia Artificial (IA) demuestran, a través de prácticas manuales, cómo implementar soluciones de inteligencia artificial para resolver problemas del mundo real. La capacitación en IA está disponible en dos modalidades: "presencial en vivo" y "remota en vivo"; la primera se puede llevar a cabo localmente en las instalaciones del cliente en Colombia o en los centros de capacitación corporativa de NobleProg en Colombia, la segunda se lleva a cabo a través de un escritorio remoto interactivo.

NobleProg -- Su Proveedor Local de Capacitación

Testimonios

★★★★★
★★★★★

Programa del curso Inteligencia Artificial

Title
Duration
Overview
Title
Duration
Overview
7 hours
Overview
Este curso ha sido creado para gerentes, arquitectos de soluciones, oficiales de innovación, CTO, arquitectos de software y todos los interesados en la visión general de la inteligencia artificial aplicada y el pronóstico más cercano para su desarrollo.
21 hours
Overview
El análisis predictivo es el proceso de usar el análisis de datos para hacer predicciones sobre el futuro. Este proceso utiliza datos junto con la extracción de datos, estadísticas y técnicas de aprendizaje automático para crear un modelo predictivo para pronosticar eventos futuros.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo usar Matlab para construir modelos predictivos y aplicarlos a grandes conjuntos de datos de muestra para predecir eventos futuros basados en los datos.

Al final de esta capacitación, los participantes podrán:

- Crear modelos predictivos para analizar patrones en datos históricos y transaccionales
- Use modelos predictivos para identificar riesgos y oportunidades
- Cree modelos matemáticos que capturen tendencias importantes
- Use datos de dispositivos y sistemas comerciales para reducir el desperdicio, ahorrar tiempo o reducir costos

Audiencia

- Desarrolladores
- Ingenieros
- Expertos de dominio

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
28 hours
Overview
El aprendizaje automático es una rama de la Inteligencia Artificial en la que las computadoras tienen la capacidad de aprender sin estar programadas explícitamente. R es un lenguaje de programación popular en la industria financiera. Se utiliza en aplicaciones financieras que van desde los principales programas comerciales hasta los sistemas de gestión de riesgos.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo aplicar técnicas y herramientas de aprendizaje automático para resolver problemas del mundo real en la industria financiera. R se usará como el lenguaje de programación.

Los participantes primero aprenden los principios clave, luego ponen su conocimiento en práctica al construir sus propios modelos de aprendizaje automático y usarlos para completar una serie de proyectos en equipo.

Al final de esta capacitación, los participantes podrán:

- Comprender los conceptos fundamentales en el aprendizaje automático
- Aprenda las aplicaciones y usos del aprendizaje automático en finanzas
- Desarrolle su propia estrategia de negociación algorítmica utilizando el aprendizaje automático con R

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
14 hours
Overview
Computer Vision es un campo que consiste en extraer, analizar y comprender automáticamente información útil de los medios digitales. Python es un lenguaje de programación de alto nivel famoso por su claridad de sintaxis y código.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán los conceptos básicos de Computer Vision mientras avanzan en la creación del conjunto de aplicaciones simples de Computer Vision utilizando Python.

Al final de esta capacitación, los participantes podrán:

- Comprenda los conceptos básicos de Computer Vision
- Use Python para implementar tareas de Visión por computadora
- Construye sus propios sistemas de detección de rostro, objeto y movimiento

Audiencia

- Programadores de Python interesados en Computer Vision

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
21 hours
Overview
El aprendizaje automático es una rama de la Inteligencia Artificial en la que las computadoras tienen la capacidad de aprender sin estar programadas explícitamente.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo aplicar técnicas y herramientas de aprendizaje automático para resolver problemas del mundo real en la industria financiera. Python se usará como el lenguaje de programación.

Los participantes primero aprenden los principios clave, luego ponen su conocimiento en práctica al construir sus propios modelos de aprendizaje automático y usarlos para completar una serie de proyectos en equipo.

Al final de esta capacitación, los participantes podrán:

- Comprender los conceptos fundamentales en el aprendizaje automático
- Aprenda las aplicaciones y usos del aprendizaje automático en finanzas
- Desarrolle su propia estrategia de negociación algorítmica utilizando el aprendizaje automático con Python

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
35 hours
Overview
Los avances en las tecnologías y la creciente cantidad de información están transformando la forma en que se lleva a cabo la aplicación de la ley. Los desafíos que plantea Big Data son casi tan desalentadores como la promesa de Big Data. Almacenar datos de manera eficiente es uno de estos desafíos; analizarlo efectivamente es otro.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán la mentalidad con la cual abordarán las tecnologías de Big Data, evaluarán su impacto en los procesos y políticas existentes, e implementarán estas tecnologías con el propósito de identificar la actividad delictiva y prevenir el delito. Se examinarán estudios de casos de organizaciones de orden público de todo el mundo para obtener información sobre sus enfoques, desafíos y resultados de adopción.

Al final de esta capacitación, los participantes podrán:

- Combine la tecnología Big Data con procesos tradicionales de recopilación de datos para armar una historia durante una investigación
- Implementar soluciones industriales de almacenamiento y procesamiento de big data para el análisis de datos
- Preparar una propuesta para la adopción de las herramientas y procesos más adecuados para permitir un enfoque basado en datos para la investigación criminal

Audiencia

- Especialistas en aplicación de la ley con experiencia técnica

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
28 hours
Overview
Deep Learning para NLP permite que una máquina aprenda procesamiento de lenguaje simple a complejo. Entre las tareas actualmente posibles se encuentran la traducción de idiomas y la generación de subtítulos para fotos. DL (Deep Learning) es un subconjunto de ML (Machine Learning). Python es un lenguaje de programación popular que contiene bibliotecas para Deep Learning para NLP.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar las bibliotecas de Python para el procesamiento de lenguaje natural (NLP) mientras crean una aplicación que procesa un conjunto de imágenes y genera leyendas.

Al final de esta capacitación, los participantes podrán:

- Diseño y código DL para NLP utilizando bibliotecas Python
- Crear código de Python que lea una gran colección de imágenes y genere palabras clave
- Crear código Python que genere subtítulos de las palabras clave detectadas

Audiencia

- Programadores con interés en la lingüística
- Programadores que buscan una comprensión de NLP (procesamiento de lenguaje natural)

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
14 hours
Overview
En Python Machine Learning, la característica de resumen de texto puede leer el texto de entrada y producir un resumen de texto. Esta capacidad está disponible desde la línea de comandos o como una API / biblioteca de Python. Una aplicación interesante es la creación rápida de resúmenes ejecutivos; esto es particularmente útil para las organizaciones que necesitan revisar grandes cantidades de datos de texto antes de generar informes y presentaciones.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar Python para crear una aplicación simple que genere automáticamente un resumen del texto de entrada.

Al final de esta capacitación, los participantes podrán:

- Use una herramienta de línea de comandos que resuma texto.
- Diseña y crea un código de resumen de texto usando las bibliotecas de Python.
- Evalúe tres bibliotecas de resumen de Python: sumy 0.7.0, pysummarization 1.0.4, readless 1.0.17

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
35 hours
Overview
Este curso comienza con la entrega de conocimientos conceptuales en redes neuronales y, en general, en el algoritmo de aprendizaje automático, aprendizaje profundo (algoritmos y aplicaciones).

Parte-1 (40%) de esta capacitación se centra más en los fundamentos, pero te ayudará a elegir la tecnología adecuada: TensorFlow, Caffe, Theano, DeepDrive, Keras, etc.

La Parte 2 (20%) de esta capacitación presenta Theano, una biblioteca de Python que hace que escribir modelos de aprendizaje profundo sea fácil.

Parte-3 (40%) de la capacitación estaría ampliamente basada en Tensorflow - 2nd Generation API de la biblioteca de software de código abierto de Google para Deep Learning. Los ejemplos y handson se harían todos en TensorFlow.

Audiencia

Este curso está dirigido a ingenieros que buscan utilizar TensorFlow para sus proyectos de aprendizaje profundo.

Después de completar este curso, los delegados:

- tener una buena comprensión de las redes neuronales profundas (DNN), CNN y RNN
- comprender la estructura y los mecanismos de despliegue de TensorFlow
- ser capaz de llevar a cabo las tareas y configuraciones de entorno / producción / arquitectura
- ser capaz de evaluar la calidad del código, realizar la depuración, el monitoreo
- ser capaz de implementar producción avanzada como modelos de entrenamiento, construcción de gráficos y registro

No todos los temas se cubrirán en un salón de clases público con 35 horas de duración debido a la inmensidad del tema.

La duración del curso completo será de alrededor de 70 horas y no de 35 horas.
14 hours
Overview
La biblioteca OpenNLP de Apache es un kit de herramientas basado en el aprendizaje automático para procesar texto en lenguaje natural. Es compatible con las tareas NLP más comunes, como detección de lenguaje, tokenización, segmentación de oraciones, etiquetado de voz parcial, extracción de entidad nombrada, fragmentación, análisis sintáctico y resolución de correferencia.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo crear modelos para procesar datos basados en texto usando OpenNLP. Los datos de entrenamiento de muestra y los conjuntos de datos personalizados se usarán como base para los ejercicios de laboratorio.

Al final de esta capacitación, los participantes podrán:

- Instalar y configurar OpenNLP
- Descargue modelos existentes y cree sus propios
- Entrene a los modelos en varios conjuntos de datos de muestra
- Integra OpenNLP con aplicaciones Java existentes

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
21 hours
Overview
En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo aplicar técnicas y herramientas de aprendizaje automático para resolver problemas del mundo real en la industria bancaria. Python se usará como el lenguaje de programación.

Los participantes primero aprenden los principios clave, luego ponen su conocimiento en práctica al construir sus propios modelos de aprendizaje automático y usarlos para completar una serie de proyectos en equipo.

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
28 hours
Overview
En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo aplicar técnicas y herramientas de aprendizaje automático para resolver problemas del mundo real en la industria bancaria. R se usará como el lenguaje de programación.

Los participantes primero aprenden los principios clave, luego ponen su conocimiento en práctica al construir sus propios modelos de aprendizaje automático y usarlos para completar una serie de proyectos en vivo.

Audiencia

- Desarrolladores
- Científicos de datos
- Profesionales bancarios con experiencia técnica

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
35 hours
Overview
Al final de la capacitación, se espera que los delegados estén suficientemente equipados con los conceptos esenciales de python y que sean capaces de utilizar NLTK de manera suficiente para implementar la mayoría de las operaciones basadas en ML y PNL. La capacitación tiene como objetivo proporcionar no solo un conocimiento de ejecución sino también el conocimiento lógico y operativo de la tecnología que contiene.
14 hours
Overview
En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar Matlab para diseñar, construir y visualizar una red neuronal convolucional para el reconocimiento de imágenes.

Al final de esta capacitación, los participantes podrán:

- Construya un modelo de aprendizaje profundo
- Automatizar el etiquetado de datos
- Trabaja con modelos de Caffe y TensorFlow-Keras
- Entrene datos usando múltiples GPU, la nube o clusters

Audiencia

- Desarrolladores
- Ingenieros
- Expertos de dominio

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
7 hours
Overview
TensorFlow Serving es un sistema para servir modelos de aprendizaje automático (ML) a la producción.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a configurar y usar TensorFlow Serving para implementar y administrar modelos ML en un entorno de producción.

Al final de esta capacitación, los participantes podrán:

- Entrene, exporte y sirva varios modelos de TensorFlow
- Pruebe e implemente algoritmos utilizando una única arquitectura y un conjunto de API
- Extienda TensorFlow Sirviendo para servir a otros tipos de modelos más allá de los modelos TensorFlow

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
28 hours
Overview
El aprendizaje automático es una rama de la Inteligencia Artificial en la que las computadoras tienen la capacidad de aprender sin estar programadas explícitamente. El aprendizaje profundo es un subcampo del aprendizaje automático que utiliza métodos basados ​​en el aprendizaje de representaciones de datos y estructuras tales como redes neuronales. Python es un lenguaje de programación de alto nivel famoso por su clara sintaxis y legibilidad de código.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo implementar modelos de aprendizaje profundo para la banca usando Python mientras avanzan en la creación de un modelo de riesgo de crédito de aprendizaje profundo.

Al final de esta capacitación, los participantes podrán:

- Comprender los conceptos fundamentales del aprendizaje profundo
- Aprende las aplicaciones y usos del aprendizaje profundo en la banca
- Utilice Python, Keras y TensorFlow para crear modelos de aprendizaje profundo para la banca
- Construya su propio modelo de riesgo de crédito de aprendizaje profundo usando Python

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
14 hours
Overview
En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar la pila de tecnología de iOS Machine Learning (ML) mientras avanzan en la creación e implementación de una aplicación móvil iOS.

Al final de esta capacitación, los participantes podrán:

- Cree una aplicación móvil capaz de procesar imágenes, análisis de texto y reconocimiento de voz
- Acceda a modelos de ML pre-entrenados para la integración en aplicaciones de iOS
- Crea un modelo ML personalizado
- Agregue soporte de Siri Voice a las aplicaciones de iOS
- Comprender y usar frameworks como coreML, Vision, CoreGraphics y GamePlayKit
- Utilice idiomas y herramientas como Python, Keras, Caffee, Tensorflow, sci-kit learn, libsvm, Anaconda y Spyder

Audiencia

- Desarrolladores

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
21 hours
Overview
La generación de lenguaje natural (NLG) se refiere a la producción de texto o discurso en lenguaje natural por una computadora.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo usar Python para producir texto en lenguaje natural de alta calidad construyendo su propio sistema NLG desde cero. También se examinarán los casos de estudio y los conceptos relevantes se aplicarán a los proyectos de laboratorio en vivo para generar contenido.

Al final de esta capacitación, los participantes podrán:

- Utilice NLG para generar automáticamente contenido para diversas industrias, desde periodismo, a bienes raíces, a informes meteorológicos y deportivos.
- Seleccione y organice el contenido fuente, planifique oraciones y prepare un sistema para la generación automática de contenido original
- Comprender la tubería NLG y aplicar las técnicas correctas en cada etapa
- Comprender la arquitectura de un sistema de generación de lenguaje natural (NLG)
- Implementar los algoritmos y modelos más adecuados para análisis y pedidos
- Extraiga datos de fuentes de datos disponibles públicamente, así como bases de datos seleccionadas para usar como material para el texto generado
- Reemplazar procesos de escritura manuales y laboriosos con creación de contenido automatizado y generado por computadora

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
21 hours
Overview
En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a utilizar las técnicas correctas de aprendizaje automático y procesamiento de lenguaje natural (NLP, por sus siglas en inglés) para extraer valor de los datos basados en texto.

Al final de esta capacitación, los participantes podrán:

- Resuelva problemas de ciencias de datos basados en texto con código reutilizable de alta calidad
- Aplicar diferentes aspectos de scikit-learn (clasificación, clustering, regresión, reducción de dimensionalidad) para resolver problemas
- Cree modelos efectivos de aprendizaje automático utilizando datos basados en texto
- Crear un conjunto de datos y extraer características del texto no estructurado
- Visualice los datos con Matplotlib
- Construya y evalúe modelos para obtener información
- Solucionar problemas de errores de codificación de texto

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
14 hours
Overview
Encog es un marco de aprendizaje de máquina de código abierto para Java y .Net.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo crear varios componentes de redes neuronales usando ENCOG. Se discutirán estudios de casos del mundo real y se explorarán soluciones basadas en el lenguaje de máquina para estos problemas.

Al final de esta capacitación, los participantes podrán:

- Preparar datos para redes neuronales usando el proceso de normalización
- Implementar redes de feed feed y metodologías de capacitación en propagación
- Implementar tareas de clasificación y regresión
- Modelar y entrenar redes neuronales usando el banco de trabajo basado en GUI de Encog
- Integrar el soporte de redes neuronales en aplicaciones del mundo real

Audiencia

- Desarrolladores
- Analistas
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
14 hours
Overview
Encog es un marco de aprendizaje de máquina de código abierto para Java y .Net.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán técnicas avanzadas de aprendizaje automático para construir modelos predictivos precisos de redes neuronales.

Al final de esta capacitación, los participantes podrán:

- Implementar diferentes técnicas de optimización de redes neuronales para resolver el ajuste insuficiente y el sobreajuste
- Comprender y elegir entre varias arquitecturas de redes neuronales
- Implementar redes supervisadas de retroalimentación y retroalimentación

Audiencia

- Desarrolladores
- Analistas
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
21 hours
Overview
En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán técnicas avanzadas para el aprendizaje automático con R a medida que avanzan en la creación de una aplicación en el mundo real.

Al final de esta capacitación, los participantes podrán:

- Utiliza técnicas como el ajuste de hiperparámetros y el aprendizaje profundo
- Comprender e implementar técnicas de aprendizaje no supervisadas
- Ponga un modelo en producción para usar en una aplicación más grande

Audiencia

- Desarrolladores
- Analistas
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
21 hours
Overview
En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán las técnicas de aprendizaje automático más relevantes y de vanguardia en Python a medida que crean una serie de aplicaciones de demostración que incluyen imágenes, música, texto y datos financieros.

Al final de esta capacitación, los participantes podrán:

- Implementar algoritmos y técnicas de aprendizaje automático para resolver problemas complejos
- Aplicar el aprendizaje profundo y el aprendizaje semi-supervisado a aplicaciones que involucren imagen, música, texto e información financiera
- Empujar los algoritmos de Python a su máximo potencial
- Usa bibliotecas y paquetes como NumPy y Theano

Audiencia

- Desarrolladores
- Analistas
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
21 hours
Overview
el objetivo de este curso es proporcionar una competencia general en la aplicación de métodos de aprendizaje automático en la práctica. Mediante el uso del lenguaje de programación Python y sus diversas bibliotecas, y basado en una multitud de ejemplos prácticos, este curso enseña cómo utilizar los bloques de construcción más importantes del aprendizaje automático, cómo tomar decisiones de modelado de datos, interpretar el las salidas de los algoritmos y validar los resultados.

nuestro objetivo es darle las habilidades para entender y utilizar las herramientas más fundamentales de la caja de herramientas machine learning con confianza y evitar las trampas comunes de las aplicaciones de Ciencias de la información.
21 hours
Overview
Fiji es un paquete de procesamiento de imágenes de código abierto que agrupa ImageJ (un programa de procesamiento de imágenes científicas multidimensionales) y una serie de complementos para el análisis de imágenes científicas.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar la distribución de Fiji y su programa subyacente ImageJ para crear una aplicación de análisis de imágenes.

Al final de esta capacitación, los participantes podrán:

- Utilice las características de programación avanzadas y los componentes de software de Fiji para ampliar ImageJ
- Sujete imágenes tridimensionales grandes de mosaicos superpuestos
- Actualice automáticamente una instalación de Fiji en el arranque utilizando el sistema de actualización integrado
- Seleccione entre una amplia selección de lenguajes de scripting para crear soluciones de análisis de imágenes personalizadas
- Utilice las poderosas bibliotecas de Fiji, como ImgLib en grandes conjuntos de datos de bioimagen
- Implemente su aplicación y colabore con otros científicos en proyectos similares

Audiencia

- Científicos
- Investigadores
- Desarrolladores

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
21 hours
Overview
Este entrenamiento en vivo, dirigido por un instructor, presenta el software, el hardware y el proceso paso a paso necesarios para construir un sistema de reconocimiento facial desde cero.

El hardware utilizado en este laboratorio incluye Rasberry Pi, un módulo de cámara, servos (opcional), etc. Los participantes son responsables de comprar estos componentes ellos mismos. El software utilizado incluye OpenCV, Linux, Python, etc.

Al final de esta capacitación, los participantes podrán:

- Instale Linux, OpenCV y otras utilidades de software y bibliotecas en un Rasberry Pi.
- Configure OpenCV para capturar y detectar imágenes faciales.
- Comprenda las diversas opciones para empaquetar un sistema Rasberry Pi para su uso en entornos del mundo real.
- Adapte el sistema para una variedad de casos de uso, incluida la vigilancia, la verificación de identidad, etc.

Audiencia

- Desarrolladores
- Técnicos de hardware / software
- Personas técnicas en todas las industrias
- Aficionados

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica

Nota

- Otras opciones de hardware y software incluyen: Arduino, OpenFace, Windows, etc. Si desea utilizar alguno de estos, contáctenos para organizarlo.
14 hours
Overview
OpenFace es un software de reconocimiento facial en tiempo real basado en Python y Torch basado en la investigación FaceNet de Google.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar los componentes de OpenFace para crear y desplegar una aplicación de reconocimiento facial de muestra.

Al final de esta capacitación, los participantes podrán:

Trabaje con los componentes de OpenFace, incluidos dlib, OpenVC, Torch y nn4 para implementar la detección de rostros, la alineación y la transformación.
Aplique OpenFace a aplicaciones del mundo real tales como vigilancia, verificación de identidad, realidad virtual, juegos e identificación de clientes habituales, etc.

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
14 hours
Overview
Embedding Projector es una aplicación web de código abierto para visualizar los datos utilizados para entrenar sistemas de aprendizaje automático. Creado por Google, es parte de TensorFlow.

Esta capacitación en vivo dirigida por un instructor presenta los conceptos detrás de Embedding Projector y guía a los participantes a través de la configuración de un proyecto de demostración.

Al final de esta capacitación, los participantes podrán:

- Explore cómo los datos se interpretan mediante modelos de aprendizaje automático
- Navegue a través de vistas 3D y 2D de datos para comprender cómo lo interpreta un algoritmo de aprendizaje automático
- Comprenda los conceptos detrás de Embeddings y su papel en la representación de vectores matemáticos para imágenes, palabras y números.
- Explore las propiedades de una incrustación específica para comprender el comportamiento de un modelo
- Aplicar Embedding Project a casos de uso del mundo real, como crear un sistema de recomendación de canciones para amantes de la música

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
28 hours
Overview
El aprendizaje automático es una rama de la Inteligencia Artificial en la que las computadoras tienen la capacidad de aprender sin estar programadas explícitamente. El aprendizaje profundo es un subcampo del aprendizaje automático que utiliza métodos basados ​​en el aprendizaje de representaciones de datos y estructuras tales como redes neuronales. R es un lenguaje de programación popular en la industria financiera. Se utiliza en aplicaciones financieras que van desde los principales programas comerciales hasta los sistemas de gestión de riesgos.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo implementar modelos de aprendizaje profundo para finanzas usando R a medida que avanzan en la creación de un modelo de predicción del precio de las acciones de aprendizaje profundo.

Al final de esta capacitación, los participantes podrán:

- Comprender los conceptos fundamentales del aprendizaje profundo
- Aprende las aplicaciones y usos del aprendizaje profundo en finanzas
- Use R para crear modelos de aprendizaje profundo para finanzas
- Construya su propio modelo de predicción del precio de las acciones de aprendizaje profundo utilizando R

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
28 hours
Overview
El aprendizaje automático es una rama de la Inteligencia Artificial en la que las computadoras tienen la capacidad de aprender sin estar programadas explícitamente. El aprendizaje profundo es un subcampo del aprendizaje automático que utiliza métodos basados ​​en el aprendizaje de representaciones de datos y estructuras tales como redes neuronales. R es un lenguaje de programación popular en la industria financiera. Se utiliza en aplicaciones financieras que van desde los principales programas comerciales hasta los sistemas de gestión de riesgos.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo implementar modelos de aprendizaje profundo para la banca usando R a medida que avanzan en la creación de un modelo de riesgo de crédito de aprendizaje profundo.

Al final de esta capacitación, los participantes podrán:

- Comprender los conceptos fundamentales del aprendizaje profundo
- Aprende las aplicaciones y usos del aprendizaje profundo en la banca
- Use R para crear modelos de aprendizaje profundo para la banca
- Construya su propio modelo de riesgo de crédito de aprendizaje profundo usando R

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica

Próximos Cursos Inteligencia Artificial

Cursos de Fin de Semana de Inteligencia Artificial, Capacitación por la Tarde de Inteligencia Artificial, Inteligencia Artificial boot camp, Clases de Inteligencia Artificial, Capacitación de Fin de Semana de Inteligencia Artificial, Cursos por la Tarde de Inteligencia Artificial, Inteligencia Artificial coaching, Instructor de Inteligencia Artificial, Capacitador de Inteligencia Artificial, Inteligencia Artificial con instructor, Cursos de Formación de Inteligencia Artificial, Inteligencia Artificial en sitio, Cursos Privados de Inteligencia Artificial, Clases Particulares de Inteligencia Artificial, Capacitación empresarial de Inteligencia Artificial, Talleres para empresas de Inteligencia Artificial, Cursos en linea de Inteligencia Artificial, Programas de capacitación de Inteligencia Artificial, Clases de Inteligencia ArtificialCursos de Fin de Semana de AI, Capacitación por la Tarde de Artificial Intelligence (AI), Artificial Intelligence (AI) boot camp, Clases de AI, Capacitación de Fin de Semana de AI, Cursos por la Tarde de Artificial Intelligence (AI), Artificial Intelligence coaching, Instructor de Artificial Intelligence (AI), Capacitador de Artificial Intelligence (AI), Artificial Intelligence con instructor, Cursos de Formación de AI, Artificial Intelligence (AI) en sitio, Cursos Privados de Artificial Intelligence (AI), Clases Particulares de Artificial Intelligence (AI), Capacitación empresarial de AI (Artificial Intelligence), Talleres para empresas de AI (Artificial Intelligence), Cursos en linea de AI (Artificial Intelligence), Programas de capacitación de AI (Artificial Intelligence), Clases de Artificial Intelligence

Promociones

Descuentos en los Cursos

Respetamos la privacidad de su dirección de correo electrónico. No transmitiremos ni venderemos su dirección a otras personas.
En cualquier momento puede cambiar sus preferencias o cancelar su suscripción por completo.

Algunos de nuestros clientes

is growing fast!

We are looking to expand our presence in Colombia!

As a Business Development Manager you will:

  • expand business in Colombia
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!