Cursos de Aprendizaje Automático

Cursos de Aprendizaje Automático

Los cursos de capacitación locales, dirigidos por un instructor en vivo (ML), demuestran a través de la práctica cómo aplicar técnicas de aprendizaje de máquinas y herramientas para resolver problemas del mundo real en diversas industrias. Los cursos de NobleProg ML cubren diferentes lenguajes y frameworks de programación, incluyendo Python, R Language y MATLAB. Se ofrecen cursos de aprendizaje de máquinas para varias aplicaciones de la industria, incluyendo finanzas, banca y seguros y cubren los fundamentos del aprendizaje de máquinas, así como enfoques más avanzados como el aprendizaje profundo.

El entrenamiento de aprendizaje en máquina está disponible como "entrenamiento en vivo en el sitio" o "entrenamiento en vivo remoto". El entrenamiento en vivo se puede realizar localmente en las instalaciones del cliente en Colombia o en los centros de entrenamiento corporativos de NobleProg en Colombia. El entrenamiento remoto en vivo se lleva a cabo por medio de un escritorio remoto interactivo.

NobleProg--su proveedor de capacitación local

Machine Translated

Testimonios

★★★★★
★★★★★

Algunos de nuestros clientes

Programa del curso Machine Learning (ML)

Title
Duration
Overview
Title
Duration
Overview
14 hours
Overview
Este curso cubre AI (enfatizando Aprendizaje Automático y Aprendizaje Profundo) en la Industria Automotriz. Ayuda a determinar qué tecnología puede (potencialmente) utilizarse en situaciones múltiples en un automóvil: desde la simple automatización, el reconocimiento de imágenes hasta la toma de decisiones autónoma.
14 hours
Overview
Esta sesión de capacitación basada en el aula explorará técnicas de aprendizaje automático, con ejemplos basados en computadora y ejercicios de resolución de casos de estudio utilizando un programa relevante.
14 hours
Overview
La biblioteca OpenNLP de Apache es un kit de herramientas basado en el aprendizaje automático para procesar texto en lenguaje natural. Es compatible con las tareas NLP más comunes, como detección de lenguaje, tokenización, segmentación de oraciones, etiquetado de voz parcial, extracción de entidad nombrada, fragmentación, análisis sintáctico y resolución de correferencia.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo crear modelos para procesar datos basados en texto usando OpenNLP. Los datos de entrenamiento de muestra y los conjuntos de datos personalizados se usarán como base para los ejercicios de laboratorio.

Al final de esta capacitación, los participantes podrán:

- Instalar y configurar OpenNLP
- Descargue modelos existentes y cree sus propios
- Entrene a los modelos en varios conjuntos de datos de muestra
- Integra OpenNLP con aplicaciones Java existentes

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
14 hours
Overview
OpenFace es un software de reconocimiento facial en tiempo real basado en Python y Torch basado en la investigación FaceNet de Google.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar los componentes de OpenFace para crear y desplegar una aplicación de reconocimiento facial de muestra.

Al final de esta capacitación, los participantes podrán:

Trabaje con los componentes de OpenFace, incluidos dlib, OpenVC, Torch y nn4 para implementar la detección de rostros, la alineación y la transformación.
Aplique OpenFace a aplicaciones del mundo real tales como vigilancia, verificación de identidad, realidad virtual, juegos e identificación de clientes habituales, etc.

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
21 hours
Overview
El curso está dedicado a aquellos que deseen conocer un programa alternativo al paquete comercial de MATLAB. La capacitación de tres días proporciona información completa sobre cómo moverse por el entorno y cómo realizar el paquete OCTAVE para el análisis de datos y cálculos de ingeniería. Los destinatarios de la capacitación son principiantes, pero también aquellos que conocen el programa y desean sistematizar su conocimiento y mejorar sus habilidades. No se requiere conocimiento de otros lenguajes de programación, pero facilitará en gran medida la adquisición de conocimiento por parte de los estudiantes. El curso le mostrará cómo usar el programa en muchos ejemplos prácticos.
14 hours
Overview
Esta sesión de capacitación basada en el aula contendrá presentaciones y ejemplos basados en computadora y ejercicios de estudio de caso para emprender con bibliotecas de redes neurales y profundas relevantes
28 hours
Overview
Este curso le proporcionará conocimientos en redes neuronales y, en general, en algoritmos de aprendizaje automático, aprendizaje profundo (algoritmos y aplicaciones).

Este entrenamiento se enfoca más en los fundamentos, pero lo ayudará a elegir la tecnología adecuada: TensorFlow, Caffe, Teano, DeepDrive, Keras, etc. Los ejemplos están hechos en TensorFlow.
21 hours
Overview
Esta sesión de capacitación basada en el aula explorará las herramientas de aprendizaje automático con (sugerido) Python. Los delegados tendrán ejemplos basados en computadora y ejercicios de estudio de caso para emprender.
21 hours
Overview
Este curso introduce métodos de aprendizaje automático en aplicaciones de robótica.

Es un amplio panorama de los métodos existentes, motivaciones e ideas principales en el contexto del reconocimiento de patrones.

Después de un breve trasfondo teórico, los participantes realizarán ejercicios sencillos usando código abierto (normalmente R) o cualquier otro software popular.
21 hours
Overview
el objetivo de este curso es proporcionar una competencia general en la aplicación de métodos de aprendizaje automático en la práctica. Mediante el uso del lenguaje de programación Python y sus diversas bibliotecas, y basado en una multitud de ejemplos prácticos, este curso enseña cómo utilizar los bloques de construcción más importantes del aprendizaje automático, cómo tomar decisiones de modelado de datos, interpretar el las salidas de los algoritmos y validar los resultados.

nuestro objetivo es darle las habilidades para entender y utilizar las herramientas más fundamentales de la caja de herramientas machine learning con confianza y evitar las trampas comunes de las aplicaciones de Ciencias de la información.
14 hours
Overview
En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar la pila de tecnología de iOS Machine Learning (ML) mientras avanzan en la creación e implementación de una aplicación móvil iOS.

Al final de esta capacitación, los participantes podrán:

- Cree una aplicación móvil capaz de procesar imágenes, análisis de texto y reconocimiento de voz
- Acceda a modelos de ML pre-entrenados para la integración en aplicaciones de iOS
- Crea un modelo ML personalizado
- Agregue soporte de Siri Voice a las aplicaciones de iOS
- Comprender y usar frameworks como coreML, Vision, CoreGraphics y GamePlayKit
- Utilice idiomas y herramientas como Python, Keras, Caffee, Tensorflow, sci-kit learn, libsvm, Anaconda y Spyder

Audiencia

- Desarrolladores

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
14 hours
Overview
OpenNN es una biblioteca de clases de código abierto escrita en C ++ que implementa redes neuronales para su uso en aprendizaje automático.

En este curso repasaremos los principios de las redes neuronales y utilizaremos OpenNN para implementar una aplicación de muestra.

Audiencia

Desarrolladores de software y programadores que deseen crear aplicaciones de Deep Learning.

Formato del curso

Conferencia y discusión junto con ejercicios prácticos.
7 hours
Overview
Este curso de capacitación es para personas que deseen aplicar técnicas básicas de Aprendizaje de Máquinas en aplicaciones prácticas.

Científicos de datos y estadísticos que tienen cierta familiaridad con el aprendizaje de máquinas y saben cómo programar R. El énfasis de este curso está en los aspectos prácticos de la preparación de datos / modelos, la ejecución, el análisis post hoc y la visualización. El propósito es dar una introducción práctica al aprendizaje automático a los participantes interesados en aplicar los métodos en el trabajo

Se utilizan ejemplos específicos del sector para hacer que la formación sea relevante para el público.
14 hours
Overview
El objetivo de este curso es proporcionar una competencia básica en la aplicación de los métodos de aprendizaje automático en la práctica. A través del uso de la plataforma de programación R y sus diversas bibliotecas, y basado en una multitud de ejemplos prácticos, este curso enseña cómo usar los bloques de construcción más importantes de Aprendizaje de Máquinas, cómo tomar decisiones de modelado de datos, interpretar los resultados de los algoritmos y Validar los resultados.

Nuestro objetivo es darle las habilidades para entender y usar las herramientas más fundamentales de la caja de herramientas de Aprendizaje de Máquinas con confianza y evitar las trampas comunes de las aplicaciones de Data Sciences.
14 hours
Overview
El objetivo de este curso es proporcionar una competencia básica en la aplicación de los métodos de aprendizaje automático en la práctica. A través del uso del lenguaje de programación Python y sus diversas bibliotecas, y basado en una multitud de ejemplos prácticos, este curso enseña cómo usar los bloques de construcción más importantes de Aprendizaje de Máquinas, cómo tomar decisiones de modelado de datos, interpretar las salidas de los algoritmos y Validar los resultados.

Nuestro objetivo es darle las habilidades para entender y usar las herramientas más fundamentales de la caja de herramientas de Aprendizaje de Máquinas con confianza y evitar las trampas comunes de las aplicaciones de Data Sciences.
14 hours
Overview
El objetivo de este curso es proporcionar una competencia básica en la aplicación de métodos de aprendizaje automático en la práctica. A través del uso del lenguaje de programación Scala y de sus diversas bibliotecas, y basado en una multitud de ejemplos prácticos, este curso enseña cómo usar los bloques de construcción más importantes de Aprendizaje de Máquinas, cómo tomar decisiones de modelado de datos, interpretar las salidas de los algoritmos y validar los resultados.

Nuestro objetivo es darle las habilidades para entender y usar las herramientas más fundamentales de la caja de herramientas de Aprendizaje de Máquinas con confianza y evitar las trampas comunes de las aplicaciones de Data Sciences.
28 hours
Overview
El aprendizaje automático es una rama de la Inteligencia Artificial en la que las computadoras tienen la capacidad de aprender sin estar programadas explícitamente. R es un lenguaje de programación popular en la industria financiera. Se utiliza en aplicaciones financieras que van desde los principales programas comerciales hasta los sistemas de gestión de riesgos.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo aplicar técnicas y herramientas de aprendizaje automático para resolver problemas del mundo real en la industria financiera. R se usará como el lenguaje de programación.

Los participantes primero aprenden los principios clave, luego ponen su conocimiento en práctica al construir sus propios modelos de aprendizaje automático y usarlos para completar una serie de proyectos en equipo.

Al final de esta capacitación, los participantes podrán:

- Comprender los conceptos fundamentales en el aprendizaje automático
- Aprenda las aplicaciones y usos del aprendizaje automático en finanzas
- Desarrolle su propia estrategia de negociación algorítmica utilizando el aprendizaje automático con R

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
21 hours
Overview
El aprendizaje automático es una rama de la Inteligencia Artificial en la que las computadoras tienen la capacidad de aprender sin estar programadas explícitamente.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo aplicar técnicas y herramientas de aprendizaje automático para resolver problemas del mundo real en la industria financiera. Python se usará como el lenguaje de programación.

Los participantes primero aprenden los principios clave, luego ponen su conocimiento en práctica al construir sus propios modelos de aprendizaje automático y usarlos para completar una serie de proyectos en equipo.

Al final de esta capacitación, los participantes podrán:

- Comprender los conceptos fundamentales en el aprendizaje automático
- Aprenda las aplicaciones y usos del aprendizaje automático en finanzas
- Desarrolle su propia estrategia de negociación algorítmica utilizando el aprendizaje automático con Python

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
21 hours
Overview
Este curso de capacitación es para personas que desean aplicar Machine Learning en aplicaciones prácticas para su equipo. La capacitación no se sumergirá en tecnicismos y girará en torno a conceptos básicos y aplicaciones comerciales / operativas de la misma.

Público objetivo

- Inversores y empresarios de IA
- Gerentes e ingenieros cuya compañía se está aventurando en el espacio de IA
- Analistas e inversores Business
21 hours
Overview
Este curso cubre IA (enfatizando Aprendizaje automático y Aprendizaje profundo)
7 hours
Overview
This instructor-led, live training (onsite or remote) is aimed at technical persons who wish to learn how to implement a machine learning strategy while maximizing the use of big data.

By the end of this training, participants will:

- Understand the evolution and trends for machine learning.
- Know how machine learning is being used across different industries.
- Become familiar with the tools, skills and services available to implement machine learning within an organization.
- Understand how machine learning can be used to enhance data mining and analysis.
- Learn what a data middle backend is, and how it is being used by businesses.
- Understand the role that big data and intelligent applications are playing across industries.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
7 hours
Overview
OpenNMT es un sistema de traducción de máquina neural completo, de código abierto (MIT) que utiliza el juego de herramientas matemático de la Antorcha.

En esta capacitación, los participantes aprenderán cómo configurar y utilizar OpenNMT para llevar a cabo la traducción de varios conjuntos de datos de muestra. El curso comienza con una visión general de las redes neuronales que se aplican a la traducción automática. Los participantes realizarán ejercicios en vivo para demostrar su comprensión de los conceptos aprendidos y obtener retroalimentación del instructor. Al final de este entrenamiento, los participantes tendrán los conocimientos y la práctica necesarios para implementar una solución OpenNMT en vivo.

Las muestras de idioma fuente y de destino pueden pre-arreglarse según los requisitos del cliente.

Audiencia
Ingenieros de traducción y localización

Formato del curso

Parte conferencia, discusión de parte, práctica práctica pesada
21 hours
Overview
PaddlePaddle (PArallel Distributed Deep LEarning) es una plataforma de aprendizaje profundo escalable desarrollada por Baidu.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar PaddlePaddle para permitir el aprendizaje profundo en sus aplicaciones de productos y servicios.

Al final de esta capacitación, los participantes podrán:

- Configurar y configurar PaddlePaddle
- Configure una red neuronal convolucional (CNN) para el reconocimiento de imágenes y la detección de objetos
- Configurar una Red Neuronal Recurrente (RNN) para el análisis de sentimientos
- Establecer un aprendizaje profundo sobre los sistemas de recomendación para ayudar a los usuarios a encontrar respuestas
- Predecir porcentajes de clics (CTR), clasificar conjuntos de imágenes a gran escala, realizar reconocimiento óptico de caracteres (OCR), buscar rangos, detectar virus informáticos e implementar un sistema de recomendaciones.

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
21 hours
Overview
En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo aplicar técnicas y herramientas de aprendizaje automático para resolver problemas del mundo real en la industria bancaria. Python se usará como el lenguaje de programación.

Los participantes primero aprenden los principios clave, luego ponen su conocimiento en práctica al construir sus propios modelos de aprendizaje automático y usarlos para completar una serie de proyectos en equipo.

Audiencia

- Desarrolladores
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
21 hours
Overview
TensorFlow es una biblioteca popular y de aprendizaje automático desarrollada por Go ogle para aprendizaje profundo, computación numérica y aprendizaje automático a gran escala. TensorFlow 2.0, lanzado en enero de 2019, es la versión más nueva de TensorFlow e incluye mejoras en la ejecución entusiasta, la compatibilidad y la coherencia de la API.

Esta capacitación en vivo dirigida por un instructor (en el sitio o remota) está dirigida a desarrolladores y científicos de datos que desean usar Tensorflow 2.0 para construir predictores, clasificadores, modelos generativos, redes neuronales, etc.

Al final de esta capacitación, los participantes podrán:

- Instale y configure TensorFlow 2.0.
- Comprenda los beneficios de TensorFlow 2.0 sobre las versiones anteriores.
- Construir modelos de aprendizaje profundo.
- Implemente un clasificador de imagen avanzado.
- Implemente un modelo de aprendizaje profundo en la nube, dispositivos móviles e IoT.

Formato del curso

- Conferencia interactiva y discusión.
- Muchos ejercicios y práctica.
- Implementación práctica en un entorno de laboratorio en vivo.

Opciones de personalización del curso

- Para solicitar una capacitación personalizada para este curso, contáctenos para organizarlo.
- Para obtener más información sobre TensorFlow , visite: https://www.tensorflow.org/
14 hours
Overview
Deeplearning4j es una biblioteca de código abierto y de aprendizaje profundo escrita para Java y Scala. Integrado con Hadoop y Spark, DL4J está diseñado para ser utilizado en entornos empresariales en GPUs y CPU distribuidas.

Word2Vec es un método de computación de representaciones vectoriales de palabras introducidas por un equipo de investigadores de Google liderado por Tomas Mikolov.

Audiencia

Este curso está dirigido a investigadores, ingenieros y desarrolladores que buscan utilizar Deeplearning4J para construir modelos Word2Vec.
35 hours
Overview
Este curso comienza con la entrega de conocimientos conceptuales en redes neuronales y, en general, en el algoritmo de aprendizaje automático, aprendizaje profundo (algoritmos y aplicaciones).

Parte-1 (40%) de esta capacitación se centra más en los fundamentos, pero te ayudará a elegir la tecnología adecuada: TensorFlow, Caffe, Theano, DeepDrive, Keras, etc.

La Parte 2 (20%) de esta capacitación presenta Theano, una biblioteca de Python que hace que escribir modelos de aprendizaje profundo sea fácil.

Parte-3 (40%) de la capacitación estaría ampliamente basada en Tensorflow - 2nd Generation API de la biblioteca de software de código abierto de Google para Deep Learning. Los ejemplos y handson se harían todos en TensorFlow.

Audiencia

Este curso está dirigido a ingenieros que buscan utilizar TensorFlow para sus proyectos de aprendizaje profundo.

Después de completar este curso, los delegados:

- tener una buena comprensión de las redes neuronales profundas (DNN), CNN y RNN
- comprender la estructura y los mecanismos de despliegue de TensorFlow
- ser capaz de llevar a cabo las tareas y configuraciones de entorno / producción / arquitectura
- ser capaz de evaluar la calidad del código, realizar la depuración, el monitoreo
- ser capaz de implementar producción avanzada como modelos de entrenamiento, construcción de gráficos y registro

No todos los temas se cubrirán en un salón de clases público con 35 horas de duración debido a la inmensidad del tema.

La duración del curso completo será de alrededor de 70 horas y no de 35 horas.
35 hours
Overview
TensorFlow ™ es una biblioteca de software de código abierto para computación numérica utilizando gráficos de flujo de datos.

SyntaxNet es una estructura de procesamiento de lenguaje natural de la red neuronal para TensorFlow.

Word2Vec se utiliza para el aprendizaje de representaciones vectoriales de palabras, llamadas "embeddings palabra". Word2vec es un modelo predictivo particularmente computacionalmente eficiente para aprender las incorporaciones de palabras a partir de texto en bruto. Viene en dos sabores, el modelo continuo de la bolsa-de-palabras (CBOW) y el modelo de Skip-Gram (capítulo 3.1 y 3.2 en Mikolov y otros).

Utilizado en tándem, SyntaxNet y Word2Vec permite a los usuarios generar modelos de incorporación aprendida de entrada de lenguaje natural.

Audiencia

Este curso está dirigido a desarrolladores e ingenieros que tienen la intención de trabajar con los modelos SyntaxNet y Word2Vec en sus gráficos TensorFlow.

Después de completar este curso, los delegados:

Entender la estructura y los mecanismos de despliegue de TensorFlow

- ser capaz de llevar a cabo las tareas de instalación / producción de entorno / arquitectura y configuración
- ser capaz de evaluar la calidad del código, realizar depuración,
- ser capaz de implementar la producción avanzada como modelos de entrenamiento, términos de inclusión, gráficos de construcción y registro
7 hours
Overview
La Unidad de Procesamiento de Tensor (TPU) es la arquitectura que Google ha utilizado internamente durante varios años y ahora está disponible para el público en general. Incluye varias optimizaciones específicamente para su uso en redes neuronales, incluida la multiplicación simplificada de matrices, y enteros de 8 bits en lugar de 16 bits para devolver niveles adecuados de precisión.

En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo aprovechar las innovaciones en los procesadores de TPU para maximizar el rendimiento de sus propias aplicaciones de inteligencia artificial.

Al final de la capacitación, los participantes podrán:

- Entrenar varios tipos de redes neuronales en grandes cantidades de datos
- Use TPU para acelerar el proceso de inferencia hasta en dos órdenes de magnitud
- Utilice TPU para procesar aplicaciones intensivas, como búsqueda de imágenes, visión en la nube y fotos

Audiencia

- Desarrolladores
- Investigadores
- Ingenieros
- Científicos de datos

Formato del curso

- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
21 hours
Overview
Torch es una biblioteca de aprendizaje de máquina de código abierto y un marco informático científico basado en el lenguaje de programación Lua. Proporciona un entorno de desarrollo para numéricos, aprendizaje automático y visión por computadora, con un énfasis particular en aprendizaje profundo y redes convolucionales. Es uno de los marcos más rápidos y flexibles para Machine and Deep Learning y lo utilizan compañías como Facebook, Google, Twitter, NVIDIA, AMD, Intel y muchas otras.

En este curso, cubrimos los principios de Torch, sus características únicas y cómo se puede aplicar en aplicaciones del mundo real. Pasamos por numerosos ejercicios prácticos en todas partes, demostrando y practicando los conceptos aprendidos.

Al final del curso, los participantes comprenderán a fondo las características y capacidades subyacentes de Torch, así como su rol y contribución dentro del espacio de IA en comparación con otros marcos y bibliotecas. Los participantes también habrán recibido la práctica necesaria para implementar Torch en sus propios proyectos.

Audiencia

Desarrolladores de software y programadores que deseen habilitar Machine and Deep Learning dentro de sus aplicaciones

Formato del curso

Descripción general de Machine and Deep Learning
Ejercicios de integración y codificación en clase
Preguntas de prueba salpicadas en el camino para verificar la comprensión
Cursos de Fin de Semana de Machine Learning (ML), Capacitación por la Tarde de Aprendizaje Automático, Aprendizaje Automático boot camp, Clases de Machine Learning (ML), Capacitación de Fin de Semana de Machine Learning (ML), Cursos por la Tarde de Aprendizaje Automático, Machine Learning (ML) coaching, Instructor de Aprendizaje Automático, Capacitador de Machine Learning (ML), Aprendizaje Automático con instructor, Cursos de Formación de Machine Learning (ML), Machine Learning (ML) en sitio, Cursos Privados de Aprendizaje Automático, Clases Particulares de ML (Machine Learning), Capacitación empresarial de ML (Machine Learning), Talleres para empresas de Aprendizaje Automático, Cursos en linea de Machine Learning (ML), Programas de capacitación de Aprendizaje Automático, Clases de Aprendizaje Automático

Promociones

Descuentos en los Cursos

Respetamos la privacidad de su dirección de correo electrónico. No transmitiremos ni venderemos su dirección a otras personas.
En cualquier momento puede cambiar sus preferencias o cancelar su suscripción por completo.

is growing fast!

We are looking to expand our presence in Colombia!

As a Business Development Manager you will:

  • expand business in Colombia
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!