
Cursos de Reinforcement Learning impartidos por instructor en vivo en Colombia.
Testimonios
Me gustan los ejemplos para explicar
AUO友达光电(苏州)有限公司
Curso: OptaPlanner in Practice
Machine Translated
información
Amr Alaa - FAB banak Egypt
Curso: Introduction to Data Science and AI (using Python)
Machine Translated
Aprender un nuevo idioma.
FAB banak Egypt
Curso: Introduction to Data Science and AI (using Python)
Machine Translated
Presentación del tema Temporizamiento del conoc
Aly Saleh - FAB banak Egypt
Curso: Introduction to Data Science and AI (using Python)
Machine Translated
servicial y buen oyecto. Interactivo
Ahmed El Kholy - FAB banak Egypt
Curso: Introduction to Data Science and AI (using Python)
Machine Translated
Ahmed fue muy interactivo y no le importó responder a cualquier tipo de preguntas bien presentación y flujo suave del curso
Mohamed Ghowaiba - FAB banak Egypt
Curso: Introduction to Data Science and AI (using Python)
Machine Translated
El curso es muy interesante ser el enfoque principal ahora Nowdays
mohamed taher - FAB banak Egypt
Curso: Introduction to Data Science and AI (using Python)
Machine Translated
Las discusiones para ampliar nuestros horizontes
FAB banak Egypt
Curso: Introduction to Data Science and AI (using Python)
Machine Translated
Algunos de nuestros clientes



















.png)






.png)





















_ireland.gif)

Programas de los cursos Reinforcement Learning
By the end of this training, participants will be able to:
- Install and apply the libraries and programming language needed to implement Reinforcement Learning.
- Create a software agent that is capable of learning through feedback instead of through supervised learning.
- Program an agent to solve problems where decision making is sequential and finite.
- Apply knowledge to design software that can learn in a way similar to how humans learn.
By the end of this training, participants will be able to:
- Understand the relationships and differences between Reinforcement Learning and machine learning, deep learning, supervised and unsupervised learning.
- Analyze a real-world problem and redefine it as Reinforcement Learning problem.
- Implementing a solution to a real-world problem using Reinforcement Learning.
- Understand the different algorithms available in Reinforcement Learning and select the most suitable one for the problem at hand.